
15618 Project: Parallel String Matching Algorithms
Milestone Report

Abhishek Kumar and Runze Wang

Project Progress
At this point, we have completed implementing sequential versions of Aho-Corasick,

KMP, and Rabin Karp pattern matching algorithms. We have also completed implementing
parallel versions of Aho-Corasick, KMP, and Rabin Karp via OpenMP. In particular, we
parallelized the construction of AC automata by utilizing a lock-free Trie insertion algorithm and
parallel BFS traversal for constructing fail links. We have also implemented an initial version of
parallel failureless Aho-Corasick using CUDA as described in the project proposal. We have
finished initial rounds of benchmarking to make sure the parallel implementations exhibit
speedup against the sequential implementation. The current parallel implementations of string
matching algorithms via OpenMP and parallel failureless Aho-Corasick via CUDA both show
great speedups against the serial implementation.

Compared with the schedule in the project proposal, we believe that we are on the
schedule if not being ahead of schedule. We believe that we are still able to finish the
deliverables mentioned in the project proposal, namely (1) a CUDA implementation of KMP and
Rabin Karp and (2) benchmarking different implementations and reasoning about the
performance of different implementations under varying assumptions about the patterns and the
text.

Updated Schedule

Time Task Who?

1 Dec - 5
Dec

Finish CUDA-based implementations of Rabin Karp and KMP. Both

6 Dec - 10
Dec

Design benchmarks to measure speedup, memory access
pattern, and bandwidth utilization.

Both

11 Dec -
14 Dec

Perform experiments and iteratively improve implementations. Both

15 Dec -
17 Dec

Finish Report and Poster Both

Plan for Poster Session
In the poster session, we will present our analysis using graphs and plots and we will

show different benchmarks that we use to reason about the performance of different string
search implementations on different kinds of queries (patterns).

Potential Issues
We don’t foresee any potential problems as of now.
However, designing good benchmarks can be nontrivial. We need to analyze the

algorithm theoretically, think about common applications of pattern searching algorithms, find



relevant corpus for evaluation, conduct the experiment on GHC or even PSC machines, and
iteratively improve our implementations based on the feedback of profilers. Our analysis will not
be restricted to the speedup. We will also reason about why the data pattern makes a particular
algorithm good or bad.


