
15-618 Project Final Poster: Parallel String Matching
Algorithms

Abhishek Kumar and Runze Wang

Summary
Project objectives

● Implement exact string matching algorithms (KMP,
Aho-Corasick, and Rabin-Karp)

● Focus on matching multiple patterns
● Parallelize the algorithms using CUDA and OpenMP

frameworks
● Parallelize construction of Aho-Corasick automaton via

lock-free data structures and parallel BFS
● Conduct experiments on constructed data to

benchmark runtime, cache misses, and branch misses
● Reason about factors limiting the speedup
● Conduct experiments on corpus from bioinformatics:

matching against DNA and protein corpuses

Project Motivation
● Text Mining
● Network Intrusion Detection Systems
● Bio-informatics
● Digital forensics
● Plagiarism Detection

All of these applications use String Matching
It’s usually the performance bottleneck



Background

KMP
● Linear time single pattern search algorithm
● Preprocesses pattern to create a Longest Prefix Suffix (LPS)

array, also known as “Failure Function”
● Time Complexity O(n+m) (n: size of text, m: size of pattern)

Rabin Karp
● Hashing based string search algorithm
● Expected linear time complexity
● Performance can be poor due lot of arithmetic

(multiplications)

Aho-Corasick
● Generalization of KMP to multiple patterns
● Finite State Automaton based on Trie
● Additional links to help faster transition between states in

case of failures
● Additional fields called “output function”, which maintain the

list of patterns that are matched at the given nodes
● Time complexity O(n+m+z) (m: sum of sizes of patterns, z:

number of occurrences)



Approaches

OpenMP Parallelism
● Simplest parallel programming model
● For KMP and Rabin-Karp, we can simply parallelize over the

patterns
● For Aho-Corasick,

○ Insert pattern strings to Trie via a lock-free variant of
Trie (based on compare_and_swap primitives)

○ Construct the failure links using parallel BFS traversal
● For all algorithms, we can parallelize the matching phase by

dividing the texts into blocks, pad the blocks to allow
patterns that spread across the blocks

CUDA Parallelism
● KMP and Rabin-Karp: Iterate over the patterns in parallel,

threads in a warp work with the same text chunk to improve
locality

● Aho-Corasick: Each thread being responsible for one
starting position of the text, designed for data parallelism

Experiment Setup
● Construct test cases to simulate adversarial applications and

to showcase weaknesses of different approaches
● Measured cache miss rates and branch miss rates to reason

about deviations from theoretical analysis
● Tested implementations on real-word corpus: protein and

DNA patterns
● Experiments conducted on GHC machines

Benchmark on Generated Data



Table 1 Cache Miss statistics
(8MB random text, 24 random patterns of length 15)

Algorithm
(Sequential)

Cache References Cache Misses Miss Rate

AC 951,657 292,065 30.690%

KMP 949,953 277,047 29.164%

Ratio 0.998 0.948 0.950



Table 2 Branch Miss statistics
‘a’ and ‘b’ appear with 99% probability, rests are ‘c’ and ‘d’

Force patterns to start with given characters.

Setup Branches Branch Misses Miss Rate

Start with ‘a’, KMP 112,642,009 1,325,748,468 8.50%

Start with ‘c’, KMP 13,333,300 1,445,196,497 0.92%



Benchmark on Corpuses : Protein and DNA



Benchmark on Corpuses : Protein and DNA



Conclusion
Sequential/OpenMP algorithms over single pattern

● Rabin-Karp: Performance stable though poor; regular
memory access patterns and mostly uniform amount of
work for each position of the text; costly arithmetic
operations limit performance

● KMP: In general the fastest, though the speedup
depends on whether branch predictors lead to huge
amount of branch misses

● Aho-Corasick: Slower than KMP due to less compact
data structures and higher cache miss rates

Sequential/OpenMP algorithms over multiple pattern
● Aho-Corasick: The obvious choice when there are

multiple patterns
● KMP and Rabin-Karp: Slow due to need to loop over

the text multiple times

CUDA implementation of Aho-Corasick
● In general the fastest, though the implementation

focusing on data parallelism does not seem to be good
if patterns are long and for most positions, we can
match the patterns for an extended length

CUDA implementations of KMP and Rabin-Karp
● Huge speedup against sequential and OpenMP

implementations of KMP and Rabin-Karp, though still
not as efficient as Aho-Corasick on most test cases


