15618 Project: Parallel String Matching Algortihms
Abhishek Kumar and Runze Wang

URL of Project Webpage
https://abhishek763.github.io/618project/

Summary

We are going to work on Parallelelizing String Matching algorithms like Aho-Corasick, KMP, and
Rabin Karp algorithms. These string search algorithms are sequential in nature, hence not
efficient for large scale tasks like DNA Sequence Matching, Network Intrusion Detection (NID).
We wish to explore their parallel implementations on GPUs.

Background

The Aho-Corasick algorithm is used to find matching substrings for a set of patterns in a large
input string. For example, given dictionary of words {a, ab, bab, bc, bca, ¢, caa} and input text
abracadabra, it must output a occurs at indexes 0, 3, 5, 7, 10, ab occurs at 0, 7, bab doesn’t
occur anywhere,.... and so on.

So it works on multiple patterns. It creates a Finite State Automaton which is similar to trie but
with additional links which help in faster transition between states when matching fails. It was
used in Unix command fgrep. Itis used in various applications like network intrusion detection
and bioinformatics for finding several input strings within a given large input string. If n is the
length of the text and m be total number of characters in the search dictionary, the Aho-Corasick
algorithm works in 0 (n+m+z) complexity where z is the total number of occurrences in text.

KMP algorithm is a linear time searching algorithm which given a pattern and text, finds all
occurrences of the pattern in the text. If the length of the text is n and m is the length of the
pattern, then KMP works in Time Complexity O (n+m) .

Rabin Karp is another string matching algorithm which uses hashing. It uses a rolling hash to
eliminate positions of the text that cannot match the pattern, and then checks for the exact
match at the positions where hash of the pattern matches the hash of the rolling window.

All these algorithms are very good for matching patterns sequentially. In this project, we will
explore their adaptations in parallel domain especially over large input text size. Network
Intrusion Detection Systems (NIDS) use string matching engine to identify network attacks by
inspecting packet content against thousands of predefined patterns. Due to the increasing
number of attacks, traditional string matching approaches on uni-processors may not be
sufficient. Parallel String matching can be very helpful for other applications too like DNA
Sequence matching, large scale text mining and digital forensics.

https://abhishek763.github.io/618project/

The Challenge

One of the biggest challenges for this project is that there isn’t enough literature around it. The
workload will be a large number of very large input text. We would look at different numbers of
patterns (small, moderate, large). But, we will assume that size of pattern will be much less than
the size of the text. Based on the implementation, there might be less locality in the data. We
will get to know more about this once we do our experiments.

Resources

We will be using GPUs on GHC machines mostly for our work. We might consider PSC
machines if we end up using MPI or OpenMP. But for now, the plan is to work with CUDA.

We found a parallel implementation of Aho-Corasick algorithm
https://code.google.com/archive/p/pfac/ We will try to run and benchmark our implementation
against it. We plan to have our own implementation for both parallel and sequential versions of
the algorithm. We will be taking help from this paper regarding Parallel Aho-Corasick algorithms
(PFAC) https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5683320

Goals and Deliverables

75% Goals: Sequential and CUDA Parallel implementation of Aho-Corasick, KMP, and Rabin
Karp Algorithms

100% Goals: 75% Goals + A very good analysis of the performance of sequential algorithms vs
parallel algorithms, analyzing bottlenecks in workload and comparable performance against the
reference implementation of PFAC.

125% Goals: 100% Goals + Trying other parallelization techniques like
SIMD/Cilk/OpenMP/MPI/Charm OR achieve significantly better performance than reference
implementation of PFAC.

Platform Choice

We aim to use GPU in the GHC machines. General Purpose GPUs have been very successful
at a lot of parallel tasks and we feel that we should explore their use-case on the parallel string
matching problem. A good performance on GPU will mean that many systems like Network
Intrusion Detection and DNA Sequence matching can use GPUs for improving performance.

Schedule

https://code.google.com/archive/p/pfac/
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5683320

13 Nov - 19 Nov

Implement Sequential Versions of Algorithms

20 Nov - 26 Nov

Implement Parallel version of Aho-Corasick

27 Nov - 30 Nov

Work towards Project Milestone

1 Dec - 7 Dec

Work on Parallel version of KMP and Rabin Karp

8 Dec - 14 Dec

Do Analysis over different algorithms

14 Dec - 17 Dec

Work towards Final Project Report and Poster

